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ABSTRACT

This paper presents a specialized extension of a general correlation-based interpolation paradigm, for
interpolating image sample color values obtained through a color filter mosaic. This extension features a
kernd determined from a priori assumed image characteristics in the form of pre-defined (as opposed to
learned) local sample neighborhood patterns. The interpolation procedure locally convolves the color-
filtered image samples with the kernel to obtain the interpolated color values. The kernd establishes a
mapping from the color-filtered input values to the recovered color output values using weighted, ordered,
and thresholded sums of sample values from the local sample neighborhood. This mapping attempts to
exploit local image sample interdependencies in order to preserve detail, while minimizing artifacts. The
procedure is simulated for the Bayer RGB color filter mosaic using a quasi-linear connectionist architecture
that is real-time-hardware-implementable. A perceptual comparison of images obtained from this
interpolation with images obtained from bilinear interpolation shows a visible reduction in interpolation
artifacts.

Keywords: Demosaicing, color interpolation, image interpolation, image reconstruction, superresolution,
Bayer color filter array, connectionist architecture, neural network.

1. INTRODUCTION

Image sampleinterpolation iswell established as an ill-posed or under-constrained problem with no unique
solution.* However, images of natural scenes typically have common characteristics that aid in obtaining a
desirable interpolation solution.

Color mosaic interpolation is a specia case of image sample interpolation, where the interpolation
nominally appliesto the same-color samplesin the mosaic. Existing color mosaic interpolation approaches
use static reconstruction theory-based methods (e.g., bilinear interpolation), or dynamic adaptive methods
(e.g., direction-adaptive bilinear interpolation).” > * > © 78 These methods make various assumptions about
image characteristics, such as the assumption that neighboring image samples will show some degree of
smoothness.
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Images of natural scenes are known to have local luminance interdependencies. Thistrait may be exploited
for interpolating image samples to obtain higher image resolutions.” ' ** Go et al. present an extension to
this paradigm for interpolating image color sample values obtained from a color filter mosaic.*? This paper
proposes another approach to this color mosaic interpolation method, derived from assumptions about
expected image characteristics. These assumptions serveto facilitate real-time hardware implementation of
the interpolation procedure, while still offering better image quality than image quality obtainable from
bilinear interpolation.

2. METHODOLOGY FOR COLOR MOSAIC INTERPOLATION
The proposed methodology makes the foll owing assumptions regarding image characteristics:

» Different local sample neighborhoods within images can share similar patterns.
»  For the similar local patterns mentioned above, the patterns are similar across different scales.

These assumptions allow a priori information from local sample patterns to be used in obtaining
interpolated color values. According to these assumptions, patterns of high-resolution neighborhoods
(sample neighborhoods with all color values present) are similar to patterns of the corresponding low-
resol ution neighborhoods (color mosai ¢ sample neighborhoods; i.e., the inputs to the interpolation).

In order to use this methodology, the local sample patterns and their mapping to the corresponding
interpolated color values must be defined. This information could either be learned from available data
(e.g., sampled images) as in Ref. 10, or derived from assumptions about expected image characteristics.
This paper is concerned with the later approach. The following assumptions are made:

* A small, odd-number dimensioned, square spatial sample neighborhood (e.g., 3 x 3 samples)
centered on the color output value location, is sufficient for the local sample neighborhood size
and configuration.

* The st of local neighborhood sample patterns may be derived from combinations of minimum
and maximum sample values in the local neighborhood. These patterns represent various
luminance gradient configurationsin the local neighborhood.

» Theloca neighborhood bilinear-interpolated color value may be used as a starting color output
value.

» The starting color output value (i.e., the bilinear-interpol ated value) may be adjusted based on the
similarity of its local neighborhood sample values to the set of sample pattern values. The
adjustment amount is proportional to the luminance gradient (as represented by the patterns), and
the adjustment direction (increase or decrease) is made in the direction towards the center sample
value. At the maximum adjustment amount (corresponding to the maximum luminance gradient),
the color output value is made equal to the center sample value.

This procedure attempts to take into account an assumed correlation between the local neighborhood
sample values and the expected center color values. This procedure also attempts to improve perceptual
quality by driving the overall center color towards a more neutral tone, thus minimizing the perception of
chromatic aliasing artifacts (“color fringes’) near large luminance gradients.

The local sample patterns are determined from combinations of minimum and maximum local sample
values. For each different pattern of minimum and maximum local sample values, a desired color output
value (minimum or maximum) isassigned. Thisassignment is made based on the rules above; i.e., equal to
the center sample value for patterns with large luminance gradients. For the Bayer RGB color mosaic®,
patterns arising from the following two sources are used to determine approximately the luminance
gradients configuration and amount:

» Different combinations of the green samples’ minimum and maximum values.
» Different combinations of the minimum and maximum values of samples the same color as the
center color being interpolated.



For interpolating green, only patterns arising from the green samples’ minimum and maximum values are
used, due to the high perceptual correlation of green with image luminance.**

To determine approximately each pattern’s degree and direction of adjustment to the bilinear-interpol ated
color values, the pre-assigned output value for each pattern is compared with the bilinear-interpolated value
for the same pattern. The approximate degree and direction of adjustment is the difference between the pre-
assigned value and the hilinear-interpolated value. This difference determines the approximate weighting
factors for the mapping of the patterns' sample values to the color output values, through the adjustment of
the bilinear-interpol ated starting values.

For an N x N -element mosaic, where N is an odd integer, the procedures of this methodology are of the
general form

__ineg if X> Xoent and X_ineg > Xeent 1
= f(X[nl’nz]): DZ-Fipos If X<Xcent and )_(+§pos<xcent’or ' (1)
otherwise

ent

where X is the interpolated color value for the local neighborhood center, X[n,,n,],
wheren;,n, =0,1,...,N- 1, is the loca neighborhood sample value 2D array, X is the local
neighborhood bilinear-interpolated center value, )~(neg and )~(pos are, respectively, the local-neighborhood-
based negative and positive adjustments to the bilinear-interpolated center value, and X X[N e l] is
thelocal neighborhood center sample value.

Forms for individual red, green, and blue interpolated color values of a Bayer color filter mosaic are
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where X, , Xgm, X, arethefinal interpolated red, green, and blue values, X, Xgm, Xqu are bilinear-

interpolated red, green, and blue values, and Xnegred, Xposred Xneggm, Xposgm, Xnegb,u, Xposblu are red,
green, and blue negative and positive adjustments to the bilinear-interpolated val ues.

The negative and positive adjustment values X o, and X, are



ineg = rndaX[Wnegpatd fnegpatd (X)] , (5)

ipos = rndaX[Wpoa)atd fpoaaatd (X)] , (6)

whered =0,1,...,D - 1isthe pattern dimension index, Whegpat, and Wpospat, are adjustment weights for
negative and positive adjustments, and fregpat, (X) and fpospat (X) are negative and positive adjustment
functions of local neighborhood sample patterns.

Forms for individual red, green, and blue negative and positive adjustment values of a Bayer color filter
mosaic are

X et = rndaX[Wnegredpatd fregreapaty (X)] (7)
X et = rndaX[Wposedpatd fooseapaty (X)] (®)
X ogarn = rndaX[Wneggrnpatd fregarnpty (X)) ©)
X posgm = rndaX[Wposgrnpatd frosgrmpaty (x)] : (10)
X ogbiu = rndaX[Wnegblupatd fregniupaty (X)| (11)
X otra = rndaX[Wposblupatd foosoupaty (X)] (12)

where Whegredpaty ,  Wposredpaty, ~ Wneggrnpat ;,  Wposgrnpaty ,  VWhegblupaty,  Vposblupat , fnegredpald (X),
fposredpatd (X), fneggrnpatd (X), fposgrnpald (X), fnegblupatd (X), fposbl upaty (X) are adjustment weights and
functions of local neighborhood sample patterns for red, green, and blue interpolation.

Thelocal neighborhood sample pattern functions are
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where b is an activation threshold bias term, freg,(X) and fros,(X) are functions of the local
neighborhood samples the same color as the color being interpolated (except green samples), fnegd (Xgm)
and fpos, (X
fnegd (Xcem) and fposd (Xcem) are functions of the center sample (red, green, or blue). Note that the bias

) are functions of the local neighborhood green samples (except a center sample), and

grn

term b, performs a variable activation thresholding function, with fregpat, (X), frospaty (X) > O only if
max[[J1> b, .



Thelocal neighborhood sample pattern functions for red, green, and blue interpolation are
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otherwise
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where fnegd (Xred) , fposd (Xred)’ fnegd (Xgrn)’ fposd (Xgrn)’ fnegd (Xblu ), fposd (Xblu) are negative and
positive functions of the local neighborhood red, green, and blue samples, except the center sample.

The negative and positive local neighborhood sample functions are

fnegd (X) = } Wneg [ﬂ1 N2 ,D,d] X[ M, nz] ’ (21)
n,nz,p

fposd(X) = } Wpos[”lynz,lld] X[ﬂl,nz] ) (22)
M,n2,p

where p=01,...,P- 1listhe pattern index, and Wneg[ ] Wpod [JL{~ 1L 1} are sample weights, with ~1
defined as the one’ s complement of the sample valuein base-2, unsigned-binary representation. The sample
2D location indices N, N, arerestricted to values from 0,1,..., N - 1 where the required color sampleiis
present in the mosaic.

Thelocal neighborhood sample functions for red, green, blue, and center samples are

fnegd (Xred) = } Wnegred [”1 N2, B, d] Xred[”l’”z] ) (23)
M ,n2, p
fp"sd( Xred) = 2 Wosred [z o] Xred [ron] (24)

NNz, p



fnegd (Xgrn) = Z Wneggrn[nl’nz’p'd] Xgrn[nl’nz] J (25)
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posred i
foosy (Xeent ) = [Woosgm | o2 X | 22 22| for green center sample, or .(30)

@Vposblu NN [ NEN for blue center sample

y
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The sample 2D location indices N, N, are restricted to values from 0,1,...,N- 1 where the
corresponding color sample value is present in the mosaic.

Sets of local sample patterns for a 3 x 3-local-neighborhood Bayer mosaic are shown in Figures 1 through
8. Each figure shows patterns for one of the eight possible input-output configurations of this mosaic. This
number of configurations arises from the four different Bayer color sample types:

* Red samples (R),

*  Green samplesin rows with red samples (GR),
*  Green samplesin rows with blue samples (GB),
*  Bluesamples(B),
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each centered in the 3 x 3 pattern, and each having two interpolated center color outputs. The patterns
grouped according to their center sample colors are

R-Center Patterns = { R-Center G-Output Patterns, (Fig. 1)
R-Center B-Output Patterns}, (Fig. 2)
GR-Center Patterns = { GR-Center R-Output Patterns, (Fig. 3)
GR-Center B-Output Patterns}, (Fig. 4)
GB-Center Patterns = { GB-Center R-Output Patterns, (Fig. 5)
GB-Center B-Output Patterns}, (Fig. 6)
B-Center Patterns = { B-Center R-Output Patterns, (Fig. 7)
B-Center G-Output Patterns}. (Fig. 8)

The pattern number, P, isequal to the total number of input-output configurations, so P = 8 for thiscase.

The figures show the patterns using a notation X, X (0,3} , where X, x=0 representsthe smallest value,
X, X=1 representsthe largest value, and X = X represents avalue of input sample X that isirrelevant to
the interpolated color output value X.The X output values shown in the patterns are assigned according to
the assumptions above. For a center sample value of either X = 0 or X =1 in the patterns, the output X is
assigned a value of either X =0 or X =1, such that X is equal to the center sample value when the
pattern shows a large luminance gradient.

The figures also show, using a diagonal line notation, the assigned val ues of )N(neg and )N(pos , the degree and

direction of adjustment to the bilinear-interpolated values, X . The diagonal lines indicate the different
degrees and directions of adjustment using different line thicknesses and slopes. The line thickness is
proportional to the degree of adjustment, and the line dope direction (positive or negative) is the same as

the adjustment direction. For no adjustment; i.e., X,o, X0 = 0, N0 lineis shown.

neg !

The degree and direction of adjustment are defined from the pattern sample values as the difference
between the assigned output value and the bilinear-interpolated value, shown by rearranging Equation 1 as

_ §<—>‘<| for x—x< 0, or
neg — ) and (3L)
otherwise
_ §<—X| for x—x> 0, or
Xpos = . (32)
otherwise

For sample pattern values quantized to X, X [{0,1} asshown in Figures 1 through 8, the possible bilinear-
interpolated output values are X [{0, 0.25,0.5,0.751 . The possible adjustment values are therefore
(from Equations 31 and 32) X.o, X,os [{0,0.25,0.5,0.75,1} . These values determine the adjustment
weights Whegpat; and Whoospat, values in Equations 5 and 6, as follows. Whegpat; and Wpospat, are defined
as egual to the change in )~<negd and )~(posd versus the change in the input sample pattern functions
fnegpat(X) and fpospat(X) , shown by rearranging Equations 5 and 6 as

W, I e————
reapetd fnegpatd (X)

and (33)



Xposd

——— 34
fpospat d (X) (34

Wpospatd =

The X.o, and X, values above are equal to the changein X.o, and X, over thefull range of fregpai(X)

and fpospat(X), as produced by the entire range of associated input values, from the full pattern value, to
the full complement of the same pattern value. Therefore, the Whegpat ; and Wpospat, values are numerically
equivaent to the )?negd and )?posd values, i.e., Whegpat 4 , Wpospaty = ;(negd,)?posd D{0,025,05, 075,]} .
Also, the dimension number D isequal to the total number of )?negd or )~(posd values. For the 3 x 3 Bayer
mosaic under consideration, D = 5.

For each different adjustment degree and direction )?negd and )~(posd shown in the figures, separate input-
output transfer function equations are devel oped from the pattern values, as given by Equations 21 and 22.
These equations are then algebraically reduced to minimized equations, as follows. With the pattern input
valu& aready quantlzed to X (0,3}, the pattern adjustment output values are likewise quantized to
X {0, , with X set to X =1 for any non-zero X value, and set to X = O otherwise. This allows the
use of standard Boolean algebraic minimization techniques to minimize the equations. The outputs of the
minimized equations are summed and thresholded as shown in Equations 13 and 14. These equation
outputs are then scaled by their particular Wnegpat; and Woospat, Values, and either added to or subtracted

from the bilinear-interpolated value X to form thefinal output value X, as shown by Equations 1, 5, and 6.

Examination of Figures 1 through 8 reveals that out of the eight different input-output configurations, only
three unique pattern sets exist. Grouping together identical pattern sets, the three groups of unique pattern
setsare

Patterns Group 1 = { R-Center G-Output Patterns, (Fig. 1)
B-Center G-Output Patterns}, (Fig. 8)
Patterns Group 2 = { R-Center B-Output Patterns, (Fig. 2
B-Center R-Output Patterns}, (Fig. 7)
Patterns Group 3 = { GR-Center R-Output Patterns, (Fig. 3)
GR-Center B-Output Patterns, (Fig. 4)
GB-Center R-Output Patterns, (Fig. 5)
GB-Center B-Output Patterns}. (Fig. 6)

This grouping allows the total number of interpolation kernels to be restricted to three, the total number of
unique pattern sets. The patterns shown according to their group designations are

R-Center Patterns = { R-Center G-Output Patterns, (Group 1)
R-Center B-Output Patterns}, (Group 2)
GR-Center Patterns = { GR-Center R-Output Patterns, (Group 3)
GR-Center B-Output Patterns}, (Group 3)
GB-Center Patterns = { GB-Center R-Output Patterns, (Group 3)
GB-Center B-Output Patterns}, (Group 3)
B-Center Patterns = { B-Center R-Output Patterns, (Group 2)

B-Center G-Output Patterns}. (Group 1)



This grouping indicates a requirement for two sets of hardware implementing the Group 3 pattern
interpolation, in order to concurrently obtain the two interpolated center color values of the GR-center and
GB-center configurations.

3. RESULTS

The procedure was simulated using The MathWorks MATLABDO with the Lighthouse true-color (RGB, 8
bits-per-color) test image.™ Thisimage was decimated and converted from a 512 x 768 Tagged Image File
Format image to a 256 x 384 Microsoft Windowsd Bitmap image (Figure 9). The image was reduced to a
Bayer RGB color mosaic image by removing the appropriate two color samples at each sample location
(Figure 10). This color mosaic image was then interpolated in an attempt to recover the removed color
samples. The resulting interpolated images were perceptually examined for image quality and interpol ation
artifacts.

I

Fig. 9: Lighthouse image Fig. 10: Lighthouse Bayer RGB mosaic.

Figure 11 shows the hilinear-interpolated image with no adjustment. Figure 12 shows the bilinear-
interpolated image with adjustment, using empirically obtained activation threshold bias b, values. The
bias values were perceptually adjusted to approximately optimal values. Values set too high resulted in
insufficient adjustment, with the image exhibiting excessive color fringes. Values set too low resulted in
excessive adjustment, with the image exhibiting “checkerboard” artifacts. All adjusted images shown here
use the same bias values.



Fig. 11: Lighthouse bilinear-interpol ated. Fig. 12: Lighthouse bilinear-interpol ated and adjusted.
In Figure 12, some color fringe reduction and image sharpening are present, but the image still contains
substantial amounts of color fringes, aswell as*“zipper noise” artifacts and false colors. Another method for
the bilinear interpolation was tried to improve the resultant image. The new method interpolated the image
using the sample pattern values to direct the bilinear interpolation of colors having four samplesin thelocal
neighborhood. For these colors, the interpolation is selected from either the average of one of the two pairs
of opposite-positioned samples, or the average of all four samples. The interpolation direction is chosen
based on the similarity of the sasmple values to the pattern values, with each pattern value associated with a
preferred interpolation direction. The pattern values and interpolation directions are associated through the
correlations of the pattern values. Pattern values with a high degree of correlation in a particular direction
are associated with interpolation in that direction. The adjustment weights are modified depending on
whether the selected interpolation uses two samples or four samples. Figure 13 shows the interpolated
image using the new interpolation method, but without adjustment, and Figure 14 shows the same image
with adjustment. Some reduction in artifacts can be seen with this method, but the image still contains
significant amounts of false colors.



Fig. 13: Lighthouse directed-linear-interpol ated. Fig. 14: Lighthouse directed-linear-interpol ated

and adjusted.

To reduce the false colors, median filtering of the red and blue color values, referenced to the green val ues,
was used on the interpolated and adjusted image.16 The median val ues of the color value differences (red —
green) and (blue — green) were determined over the local neighborhood and added to the center green value
to obtain new center red and blue values. These new red and blue values replaced the existing values.
Figure 15 shows the results of this operation. The false colors are noticeably reduced.



Fig. 15: Lighthouse directed-linear-interpol ated,
adjusted, and median-filtered.

4. CONCLUSION

This paper describes a methodol ogy for color demasaicing using a data-driven connectionist approach. This
methodology provided visible improvements over linear interpolation procedures. Although this paper
presents the methodology in conjunction with bilinear interpolation, in theory it may be used in conjunction
with other interpolation types to improve the resultant image quality.

The methodol ogy uses only simple integer and logical operations over a small local sample neighborhood,
thus facilitating its hardware implementation, especialy for real-time pixel-rate hardware. As currently
defined, the methodology requires only binary shifts, complementation, addition, comparison, and data
selection, all having fairly simple hardwareimplementations. Iterative, recursive, or learning operationsare
not required.

Goals for future investigation include: Devel opment of a more theoretical foundation for the methodol ogy,
performance optimization for general images or for special classes of images, optimization for hardware
implementation, and implementation of the optimized procedure in hardware. Topics for future
investigation include;

»  Optimization of activation threshold bias values for the adjustment function.

* Nonlinear activation functions (e.g., sigmoid function) for the adjustment.

 Larger local neighborhoods, eg., 5 x 5 samples. The primary disadvantage of larger
neighborhoods is the large increase in the procedure's design complexity and computational
reguirements.

» Theoretical links to wavel et-based image reconstruction. The methodology bears a semblance to
wavelet or “wave et-like” image reconstruction. The linear interpolation resembles |ow-frequency



signal recovery through a Haar scaling function, and the adjustment to the linear interpolation
resembles high-frequency signal recovery through a Haar wavelet function.’

» Interactions with characterigtics of the image acquisition process and with characteristics of other
image processing functions.

* Combinations of this methodology with other color mosaic interpolation methodologies. One
proposed application of this methodology is for providing a final “correction of last resort” to an
image previously processed by ancther interpolation methodol ogy.
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